Deutsches Forschungszentrum fiir Kiinstliche Intelligenz

Software Certification Management
How Can Formal Methods Help?

Dieter Hutter

German Research Center for Artificial Intelligence (DFKI GmbH)
Saarbriicken, Germany

‘ German Research Center for

Artificial Intelligence

Software C

Management of dependency and _ N
Consistency abstract mformal definition

specification

Static dependencies: ’ requirements
: R proofs
different layers of specifications : [
- formal verification £ l
Dynamic dependencies: izi
changing parts of the development program
- management of change
distributed development | , 1
- i o _ proving o _ detection _|
Merge/Patch/Diff § ML S Jetection, m
| | |
*
repalr TI_>—I provmg :?—I_>!I reuse

H|

German Research Center for

Artificial Intelligence

Formal management of change

Specification

Changing specification]
due to proof failures Translation to a

logical representation

Deduction

N~

Generating proof obligations +
structured database
Spec 1 Spec 2

,Redundancy” by formal proofs

Develop.

Graph Proof

German Research Center for

Artificial Intelligence

Formal Developments as
Structured Objects

Axioms, Logic, Calculus

05.buck = tbucks.bckobjects and 05.buck' = tbucks.bckautomaton and
(EX o5.newvalue : (05.command = tterminal.ifddomodify(tobjectids.obj5,
o5.newvalue)

ICC Function

taccessrights.allowed(tobjectids.obj5, 05.state, taccessrights.armodify)
-> (05.value‘ = tmaybe{tinformation.information}.def (05.newvalue) and
o5.valueout' = tcard.answermodified))

Automaton I

Sec. Channell

(not taccessrights.allowed(tobjectids.obj5, 05.state, taccessrights.armodify)
-> (o5.value = o5.value and o5.valueout' = tcard.answerdenied)))

05.buck = tbucks.bckobjects and 05.buck' = tbucks.bckautomaton
and o5.command = tterminal.ifddoread(tobjectids.obj5) oudjed Transmon
and (taccessrights.allowed(tobjectids.obj5, o5.state, taccessrights.arread)
-> o5.valueout' = o5.value)
and (not taccessrights.allowed(tobjectids.obj5, o5.state, taccessrights.arread)
-> o5.valueout' = tcard.answerdenied) AccessRights States Event I

and o5.value = o5.value'))_{(o5.value, o5.valueout, o5.buck)}

05.buck = tbucks.bckobjects and 05.buck’ = tbucks.bckautomaton H Card I Terminal I Cert I | Signature I

and (EX o5.i, 05, :
(o5.command = tterminal.ifddoverify(o5.i, 05.j)
and (taccessrights.allowed(tobjectids.obj5, o5.state, taccessrights.aruse)
-> (o5.valueout' = tcard.answersuccess
or o5.valueout' = tcard.answerfailure)) ...

Information

Signature

morphisms

German Research Center for

Artificial Intelligence

Verification of Properties

- Types of ,properties”:
- Structured properties: decomposition

- Elementary properties:
formal or ,informal® proof

- Decomposition und composition:

- Properties are decomposed according to the structure
of the doucments

- Reuse of properties of unchanged objects
- Synthesis of properties for changed or new objects

German Research Center for

Artificial Intelligence

reqe (Development: Hone)

Inka Development graph Logics Proof Interrupt Inka prover Theorem provers Help |
Proof-Br_ow:se’r-]
Development Graph File Help
| el B
Locotian: |
[Cment] A
Local Theorem link from theory stack to theory inst-9
] alidate by
1.Theorem:
i
o
(hx07, O
(hel” L Cimpl
{pstack” =17}
i{pastack” (cons x07 x173333)1)
~ {pstack” nil})}
{1 {hxstack”. {pstack” xstack™i)i}}
States: [S0N Prove Assume
2. Theorem:
woCAlx0T O (%17, ({fst (cons Ix07 Ix173) = Ix07))3)
Status: Show proof
3.Theorem:
i w0 dr (k] {lrest {cons 1x07 1wl = Ixd7hidd
¥ Status: Proof is assumed. Prove
ET = 4. Theorem:
i
Outpul | Message] Error] Warning] (het. L
: (ha”, ¢ {delete_until &7 =7}
Initializing INKA ... i = {if-then-else
Done, fe" = nil?
Actual theorem prover: Inka S = nt
Starting the prover nil
Theorem prover died! Clearing theorem (if-then-else
prover database information, (e” = (Fst =71}
Ho selected or available actual theorem prover! =
{rest =73
Actusl theorem prover: Inka z 5 22
Starting the prover {delete_until e” (rest s702kidadd
Successfully proved the theorem, Status: _Pl‘l:lve Assume
Saved the proof,..
Azsuming this theorem
Morphism:
i Sort morphisms:
EJ = | M =
Wo €0 OO0 @o @1 A1 Ao Ao Vo Totah 5 Depth: 0 Command: Time: Oms |

German Research Center for

Artificial Intelligence

VIAYA - 5§

File Edit Hule Apps Options Bu Help
NEEIEE
E% ; _._!ik_iﬁ!., ;
bpec natlist = spec ptack = Z
{ { :
generated type nat ::= null | siprnat); sort elem:
var x,vy,z:nat; I3
o * : mat ¥ mat -® mat, comm, asscc, unit s (rmll) :
ol tix:nat; y:nat):nat = then
v when x = nuall
else si+lplx), ¥l); {
generated type stack ::= empty _stack
axiom +(x,w) = +iv,x); | pushitocprelem; pop:stack]:
axicm +(x,+(v.=)) = +{+ix.v) . 2);:
} cir poprecie:relem; g:stack] istack =
enpty stack when s = empty_stack
then elee popisl when & = toplsl

elpe pokrecie, poplell:
{ b
generated type natlist ::= nil

| ccnelfet:nat: reet:natliet):

var 11,1Z:natliet; - |
var nl,nz:nat:

of app : natlist * matliet -= natlist, asscec. unit nil:

axicm appleconsind,11) ,12) = cons(nl, ape(ll.120);
view wiewlt : stack to natlist =

cp addlast (m:nat:; l:natliet):natlist = gorts elem |-> nat,

cong (n,nil) when 1 = nil stack |-» natlist,

elee conslfet(l), addlastin,rest(1)));: cpe poprec:elem * gtack -=stack |-» delete_until,

enpty_stack:stack | -= nil,

op delete_until(n:nat; l:natlist):natlist = top: stack -& elem | -= fst,

nil when 1 = nil pop: etack -= stack | -= rest,

else rest(l) when n = fetil) rush:elem % stack -> stack | -= ccns

else delete_untilin, rest(1)): e

German Research Center for
Artificial Intelligence

Decompositions by
,<theory" prover

Decomposition by
theorem prover

German Research Center for

Artificial Intelligence

Example: Development Graphs

Logic based representation of
structured formal developments

Specifications and implementations
as theories (consequence relations)

Formal relations between parts of
developments (morphisms)

supports different formalisms
(logics) to represent different parts

Now used
to define proof theory of CASL
to specify structuring in OMDoc

German Research Center for

Artificial Intelligence

Verification in the large

Verification in the small

uonisodwoda(

German Research Center for

Artificial Intelligence

Structured objects:

- E.g. theories, formulas, terms, signature

- E.g. document, chapter, section, paragraph
- Acyclic graphs as object representation

Structured properties between objects:
- E.g. satisfiesq, satisfies,,qy, , satisfies,

Decomposition rules along object structure
- E.g. satisfiesy, by using satisfies,,y,, for all subtheories

Calculi to prove properties on various levels

Rules to adapt inference steps in case of changes

German Research Center for

Artificial Intelligence

| Development

- Distributed development
- Update of local developments
- Merge of different branches
- Notion of conflicting developments
= Integration of different specifications

- Analysis, retrieval and repair of derived properties
- Reuse of proofs
- Transfer of informal knowledge

=Translation of proof work in common
development

German Research Center for

Artificial Intelligence

update update

ﬂ Dev
commit update
Devl \ A > V\ f Devz

: Merde

commit
< & Dev;

update

German Research Center for

Artificial Intelligence

Consistency of (Distributed) Developments -

- Development as a collection of various (types of)
documents

- By ,consistency” we mean
- Preserving syntactical correctness

- Preserving the static semantics
- Preserving proofs (properties)
e.g.:

- Implementation satisfies requirement specification
- Specification ensures security requirements

- Dependencies in the documentation of the project

German Research Center for

Artificial Intelligence

Merging Distributed Developments ,

- CVS: conflict occurs iff the same text-line is
changed in both developments

- Using structured objects:
- Non-local effects of changes!
- General rule:

- Single-worker rule:
conflict occurs if a developer inserts or edits an
object that depends on a object changed or deleted
by another developer

German Research Center for

Artificial Intelligence

Decomposition of Semantic Conflicts , _

Containment defines structuring of objects

Decomposition rules to unfold
dependency of composed objects
into dependencies of subobjects:

e.g. B<D into(A<GC,...)

Instead demanding single-worker-rule
for B < D we demand single-worker-rule
for A< C, ...

German Research Center for

Artificial Intelligence

What is a Semantic Conflict ?

conflict occurs if a developer inserts or edits
an object that depends on a object changed
or deleted by another developer

= no randomly generated dependencies

are allowed (single-worker-rule): Dev
Brnerge < Dmerge iMplies Dev, Dev,
(B

(B

merge — B, A Dmerge = D, Y \/
Dev

merge — B, A Dmerge =D,)

merge

German Research Center for

Artificial Intelligence

Spec Nat = Spec List =
free type Nat ::= 0] succ(Nat) free type List ::= nil | cons(Nat, LIST)

Op: < : Nat, Nat — Boolean 3'3: sorted leTiSt — Boolean
Vx:nat 0 < succ(x) ... X,y:nat, z:List

sorted(cons(x, cons(y, 2))) - X <V ...

Op: plus : Nat — Nat Op: reverse : List — List
Vx:nat plus(0, x) = x ... reverse(nil) = nil ...

German Research Center for
Artificial Intelligence

f(a, g(b))

Change(g), add(s, 2, a) f(a! g(b))

change(d, add 3, < Change(i), add(s, 2, a) Change(f)"add(t’ 3, 9(0)
f(a, g(b, a
@, g(b,a) f(a, g(b), ¢ f(a, g(b,a) f(a, g(b), g(c))
Change(d, add(t\ / e(e) addls 2,9 Semantic clash: no merge possible!

f(a, g(b, a), ©)

German Research Center for

Artificial Intelligence

Formal methods can help !

Helps for a formal semantics for decomposing and
composing certifications

Formal semantics for individual ,certificates®

Support for a management of change
- proofs as formal representation of certificates
- effects of changes

German Research Center for

Artificial Intelligence

